- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Blouin, Simon (2)
-
Burleigh, Matthew. R. (1)
-
Clemens, J Christopher (1)
-
Dennihy, Erik (1)
-
Dufour, Patrick (1)
-
Gary, Bruce L. (1)
-
Guidry, Joseph A. (1)
-
Hegedus, Ryan J (1)
-
Hegedus, Ryan J. (1)
-
Heintz, Tyler M. (1)
-
Hermes, J. J. (1)
-
Kaiser, Benjamin C (1)
-
Kaye, Thomas G. (1)
-
Klein, Beth L. (1)
-
Melis, Carl (1)
-
Rappaport, Saul (1)
-
Reding, Joshua S (1)
-
Sefako, Ramotholo (1)
-
Vanderbosch, Zachary P. (1)
-
Vanderburg, Andrew (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The bulk abundances of exoplanetesimals can be measured when they are accreted by white dwarfs. Recently, lithium from the accretion of exoplanetesimals was detected in relatively high levels in multiple white dwarfs. There are presently three proposed hypotheses to explain the detection of excess lithium in white dwarf photospheres: Big Bang and Galactic nucleosynthesis, continental crust, and an exomoon formed from spalled ring material. We present new observations of three previously known lithium-polluted white dwarfs (WD J1824+1213, WD J2317+1830, and LHS 2534), and one with metal pollution without lithium (SDSS J1636+1619). We also present atmospheric model fits to these white dwarfs. We then evaluate the abundances of these white dwarfs and two additional lithium-polluted white dwarfs that were previously fit using the same atmospheric models (WD J1644-0449 and SDSS J1330+6435) in the context of the three extant hypotheses for explaining lithium excesses in polluted white dwarfs. We find Big Bang and Galactic nucleosynthesis to be the most plausible explanation of the abundances in WD J1644-0449, WD J1824+1213, and WD J2317+1830. SDSS J1330+6435 will require stricter abundances to determine its planetesimal’s origins, and LHS 2534, as presently modeled, defies all three hypotheses. We find the accretion of an exomoon formed from spalled ring material to be highly unlikely to be the explanation of the lithium excess in any of these cases.more » « less
-
Vanderbosch, Zachary P.; Rappaport, Saul; Guidry, Joseph A.; Gary, Bruce L.; Blouin, Simon; Kaye, Thomas G.; Weinberger, Alycia J.; Melis, Carl; Klein, Beth L.; Zuckerman, B.; et al (, The Astrophysical Journal)Abstract We present follow-up photometry and spectroscopy of ZTF J0328−1219, strengthening its status as a white dwarf exhibiting transiting planetary debris. Using TESS and Zwicky Transient Facility photometry, along with follow-up high-speed photometry from various observatories, we find evidence for two significant periods of variability at 9.937 and 11.2 hr. We interpret these as most likely the orbital periods of different debris clumps. Changes in the detailed dip structures within the light curves are observed on nightly, weekly, and monthly timescales, reminiscent of the dynamic behavior observed in the first white dwarf discovered to harbor a disintegrating asteroid, WD 1145+017. We fit previously published spectroscopy along with broadband photometry to obtain new atmospheric parameters for the white dwarf, with M⋆= 0.731 ± 0.023 M⊙,Teff= 7630 ± 140 K, and [Ca/He] = − 9.55 ± 0.12. With new high-resolution spectroscopy, we detect prominent and narrow Na D absorption features likely of circumstellar origin, with velocities 21.4 ± 1.0 km s−1 blueshifted relative to atmospheric lines. We attribute the periodically modulated photometric signal to dusty effluents from small orbiting bodies such as asteroids or comets, but we are unable to identify the most likely material that is being sublimated, or otherwise ejected, as the environmental temperatures range from roughly 400 to 700 K.more » « less
An official website of the United States government
